
Richard Kaiser
https://www.rkaiser.de/

C++17 Polymorphic Memory Resources (pmr) and STL
Containers for Embedded Applications

Talk on Tuesday, February 1st, 2022 at the OOP 2022 Konferenz, https://www.oop-
konferenz.de/oop-
2022/programm/konferenzprogramm?tx_dmconferences_session%5Btrack%5D=687&cHa
sh=dbd0718ea72b720f4297869029d9a982.

You can download this manuscript from here.

For many embedded C++ applications, compliance with the AUTOSAR or Misra rules is
required. Among them is AUTOSAR Rule A18-5-5:

Memory management functions shall ensure the following:
(a) deterministic behavior resulting with the existence of worst-case execution time,
(b) avoiding memory fragmentation,
(c) avoid running out of memory,
(d) avoiding mismatched allocations or deallocations,
(e) no dependence on non-deterministic calls to kernel.

This rule has far-reaching consequences, because per default the C++ standard library
containers allocate their memory with new and free it with delete. These calls

• do not have deterministic execution times.
• can cause memory fragmentation.

Since new and delete violate A18-5-5, the default STL containers must not be used in applica-
tions requiring AUTOSAR compliance. This holds for many embedded applications.

With the allocators available since C++17 in the namespace std::pmr (polymorphic memory
resources) these requirements can often be satisfied. This means that, for the first time in the
history of C++, the containers and algorithms of the C++ standard library can be used in
applications that require AUTOSAR Rule A18-5-5.

https://www.rkaiser.de/
https://www.oop-konferenz.de/oop-2022
https://www.oop-konferenz.de/oop-2022/programm/konferenzprogramm?tx_dmconferences_session%5Btrack%5D=687&cHash=dbd0718ea72b720f4297869029d9a982
https://www.oop-konferenz.de/oop-2022/programm/konferenzprogramm?tx_dmconferences_session%5Btrack%5D=687&cHash=dbd0718ea72b720f4297869029d9a982
https://www.oop-konferenz.de/oop-2022/programm/konferenzprogramm?tx_dmconferences_session%5Btrack%5D=687&cHash=dbd0718ea72b720f4297869029d9a982
https://www.oop-konferenz.de/oop-2022/programm/konferenzprogramm?tx_dmconferences_session%5Btrack%5D=687&cHash=dbd0718ea72b720f4297869029d9a982
https://www.rkaiser.de/cplusplus-vortraege-und-workshops/

2 pmr and STL Container für Embedded Anwendungen

1.1 Introduction

1.1.1 About Me

I am a freelancing C++ trainer since more than 30 years, software developer and author of
several books about C++. Until 2017, I was professor at the Baden-Württemberg Cooperative
State University. Please take a look at my website:

https://www.rkaiser.de/

1.1.2 Embedded Applications

Although the term "embedded application" gives the impression of a clear and unambiguous
demarcation, this is by no means the case. If you ask 5 people what this term means to them,
you will get 10 different answers.

This is because embedded applications are very multi-faceted. They cover a wide range of
applications running under very different hardware platforms. Often, they are control systems
that have to run reliably for a long time.

https://www.rkaiser.de/

pmr and STL Container für Embedded Anwendungen 3

4 pmr and STL Container für Embedded Anwendungen

1.1.3 Tracking new and delete

Before we introduce pmr allocators in section 1.2, we first show how to use overloaded new
and delete operators to monitor calls to new- and delete.

For this purpose, global variables are defined that count each call of new- and delete

int new_counter = 0; // Number of new calls
int delete_counter = 0; // Number of delete calls
size_t allocated_mem = 0; // Allocated memory in bytes

void reset_counter()
{
 new_counter = 0;
 delete_counter = 0;
 allocated_mem = 0;
}

and which are displayed, for example, as follows:

void new_delete_summary()
{
 std::cout << std::dec << "#new: " << new_counter << " #delete: "

<< delete_counter << " #bytes: " << allocated_mem << std::endl;
 reset_counter();
}

If you define overloaded new and delete operators, they will be called every time you call
new and delete. The overloaded operators must have this signature:

void* operator new(std::size_t sz)
{ // Like the predefined new operator, this operator should only
 // call malloc and throw an exception if necessary
void* ptr = std::malloc(sz);
if (ptr)

 {
 new_counter++; // The only differences from the predefined
 allocated_mem += sz;// new-Operator

return ptr;
 }
else throw std::bad_alloc{};

}

void operator delete(void* ptr) noexcept
{
 delete_counter++;
 std::free(ptr);
}

Of course, here you can log not only the number of calls of new and delete.

pmr and STL Container für Embedded Anwendungen 5

Example: After calling

void one_explicit_new_and_delete()
{
int* pi = new int;

delete pi;
}

you get

#new: 1 #delete: 1 #bytes: 4

For STL containers, new and delete are called implicitly. After some push_backs

void vector_with_implicit_heap_allocations()
{
 std::vector<int> v;
for (int i = 0; i < 10; i++)

 v.push_back(i);
}

you get

#new: 7 #delete: 7 #bytes: 152

We will occasionally look at the contents of memory using a function like show_memory:

void show_memory(unsigned char* buffer, std::size_t buffer_size,
const char* headline = "")

{ // Shows the buffer_size bytes starting at address buffer

if (headline != "")
 std::cout << headline << std::endl;
 std::cout << "&buffer=0x" << std::hex << (unsigned int)(buffer)

<< " " << std::dec << buffer_size << " bytes" << std::endl;
int i = 0;
while (i < buffer_size)

 {
int first = i;
int last = i + std::min(10, int(buffer_size - first));

 std::cout << "&=" << std::setw(2) << std::hex <<
std::size_t(first);

 std::cout << " asc: ";

6 pmr and STL Container für Embedded Anwendungen

for (int k = first; k < last; k++)
 {

if ((buffer[k] >= 32) and (buffer[k] <= 127))
 std::cout << buffer[k];

else
 std::cout << ".";
 }

 i = i + 10;
 std::cout << std::endl;
 }
 std::cout << std::endl;
}

1.2 Allocators and polymorphic memory resources

The main features of polymorphic allocators are shown below using examples like

void vector_with_heap_memory(int n)
{
 std::vector<std::string> container;

// work with the container
for (int i = 0; i < n; ++i)

 { // No small string optimization (SSO) is desired here:
 container.push_back("A string with more than 16 chars");
 }
} // mit n=10: #new: 17 #delete: 17 #bytes: 1392

Here strings with more than 16 characters are stored in the vector so that the characters are
stored on the heap. In Visual C++, for smaller strings, the characters are stored in the string
and thus on the stack ("small string optimization" - SSO).

These examples use

std::pmr::vector

instead of std::vector. Although at first glance this looks like a separate vector class in the
pmr namespace, it is nothing else as the std::vector class with a special allocator:

namespace pmr {
template <class T>
using vector = std::vector<T, polymorphic_allocator<T>>;

} // namespace pmr

The standard library containers (except std::array) are constructed in such a way that the
functions for allocating and freeing memory are encapsulated in an allocator which is passed
as a template parameter. By default, this is std::allocator<T>, which allocates memory with
new and frees it with delete:

pmr and STL Container für Embedded Anwendungen 7

template<typename T, typename Allocator = std::allocator<T>>
class vector;

As for vector, there are pmr variants for all other sequential and associative containers. The
container classes from std::pmr differ from those from the namespace std only in that the
allocator polymorphic_allocator is used instead of std::allocator.

The pmr classes are available only since C++17 and are not yet very widely used. Therefore,
thorough tests are recommended.

1.2.1 Containers that are using a monotonic_buffer_resource

The following examples are not limited to std::vector, but can be applied to any sequential
and associative container except std::array.

With the class std::pmr::monotonic_buffer_resource, available after

#include <memory_resource>

you can allocate memory to a container, which is then used by the container instead of heap
memory. This way, when working with the container, new or delete are never called.

1. This memory is passed to the constructor

monotonic_buffer_resource(void* buffer, std::size_t buffer_size);

with its address and size. This can be, for example, an array created on the stack:

void vector_with_stack_memory(int n)
{ // The only difference are the first three statements:
 std::array<unsigned char, 100'000> memory; // local definition

// use memory as memory for the vector and the strings:
 std::pmr::monotonic_buffer_resource pool{ memory.data(),

memory.size() };
 std::pmr::vector<std::pmr::string> container{&pool}; // see 7.

// work with the container
for (int i = 0; i < n; ++i)

 {
 container.push_back("A string with more than 16 chars");
 }
} // #new: 0 #delete: 0 #bytes: 0

If the memory of memory is sufficient for all operations with the container, no more new
and delete takes place. However, if it is not sufficient, further memory is requested from
a memory_resource called upstream. See 5.

Stroustrup reports in "A tour of C++" (chapter 13.6) from an application where switching
to polymorphic memory resources (essentially changing only the first three lines as
above) reduced the memory requirement from 6 gigabytes to 300 megabytes.

8 pmr and STL Container für Embedded Anwendungen

std::string is among the containers for which polymorphic allocators are available. This
allows to use std::string and its member functions in applications where no new and
delete is allowed:

void use_strings_without_heap_allocations()
{
 std::pmr::monotonic_buffer_resource string_pool{ memory.data(),

memory.size() };
 std::pmr::string s1("This is a string", &string_pool);
 std::pmr::string s2("This is another string", &string_pool);
 s1 += s2;
int p=s1.find("hi");

} // #new: 0 #delete: 0 #bytes: 0

2. Instead of locally defined memory, globally defined memory can also be used. Since the
memory for global variables is allocated when the program is started, the memory
requirement for the array cannot cause a stack overflow when the function is called:

std::array<unsigned char, 100'000> memory; // global definition

void vector_with_global_memory(int n)
{ // The definition of memory shifted out of the function.
// everything else the same as vector_with_stack_memory

 std::pmr::monotonic_buffer_resource pool{ memory.data(),
memory.size() };

 std::pmr::vector<std::pmr::string> container{ &pool };

// work with the container
} // frees the memory of pool in memory

3. The "monotonic" in the name monotonic_buffer_resource comes from the fact that the
allocated memory grows monotonically: a monotonic_buffer_resource is always
released as a whole when it leaves the scope. Deleting individual elements of the container
does delete those elements from the container and invokes their destructor. However, the
memory of the monotonic_buffer_resource is not released (as with delete). This has the
effect to avoid memory fragmentation.

Example: If you store objects of the class

class NoAllocs// This class does not contain any members
{ // that are using an allocator (see section 1.2.4)
int i;

public:
 NoAllocs(int n) :i(n){ }
};

in a pmr::vector to which memory was assigned with a monotonic_buffer_-
resource they are stored in memory:

pmr and STL Container für Embedded Anwendungen 9

void store_NoAllocs(int n)
{ // use the global memory:
 std::pmr::monotonic_buffer_resource pool{

memory.data(), memory.size() };
 std::pmr::vector<NoAllocs> container{ &pool };

// container.reserve(2 * n);
for (int i = 0; i < n; ++i)

 {
 container.push_back(NoAllocs(i + 'A'));
 }
} // free the memory of pool in memory

With the ascii output of show_memory from section 1.1.3 you can see the data
in memory:

&= 0: A...A...B...A...B...C...A...B...C...D...
&=28: A...B...C...D...E...F...A...B...C...D...
&=50: E...F...G...H...I...A...B...C...D...E...
&=78: F...G...H...I...J...K...L...M...A...B...
...

Here you can see how the capacity of the vector is increased by a factor of 1.5
each time the previous capacity is exhausted. Since the memory is not released
again with a monotonic_buffer_resource, the old data remain in the memory.

If you had reserved memory with

container.reserve(n);

the capacity would be sufficient for n objects from the beginning. Then there
would have been no need to copy the data to a new, larger area again and again
from the area that had previously become too small:

&= 0: A...B...C...D...E...F...G...H...I...J...
&=28: K...L...M...N...O...P...Q...R...S...T...

These examples also show in particular that a pmr::vector requires more memory than
one might expect at first glance for the number of elements to be stored:
– If the capacity of the vector is exhausted and new memory is to be allocated from

memory, the old memory is not freed anymore
 A call like reserve may allocate more memory than is specified.

4. Since a monotonic_buffer_resource is freed when it leaves the scope, the memory can
be reused. This can reduce memory requirements compared to new and delete and
simplify and speed up memory management:

Example: If, after calling store_NoAllocs from 3., you call the function

10 pmr and STL Container für Embedded Anwendungen

void reuse_memory(int n)
{ // use the global memory:
 std::pmr::monotonic_buffer_resource pool{

memory.data(), memory.size() };
 std::pmr::vector<NoAllocs> container{ &pool };
 container.reserve(2 * n);
for (int i = 0; i < n; ++i)

 {
 container.push_back(NoAllocs(i + 'K'));
 }
} // frees the memory from pool in memory

which differs only by 'K' instead of 'A' from store_NoAllocs, the values in
memory are overwritten from the beginning:

&= 0: K...L...M...N...O...P...Q...R...S...T...

A pool can be shared by multiple containers:

std::pmr::monotonic_buffer_resource pool{ memory.data(),
memory.size() };

std::pmr::list<std::pmr::string> lst{ &pool };
std::pmr::vector<int> v1{ &pool };
std::pmr::vector<std::pmr::string> v2{ &pool };

5. As already mentioned in 1., a pmr container uses the memory pool as long as the pool has
free space. If the pool is exhausted, further memory is allocated from a memory_resource
called upstream, which can be specified as the last argument in the constructor.

If no such memory_resource is given, the so-called default resource is used (which can
also be obtained with get_default_resource) and the memory is allocated with new on the
heap. The reason for this approach is that pmr containers and their allocators were
designed primarily with high speed in mind, not with the goal of avoiding new and delete.
The memory requested with new can be large and managed internally like the array of a
monotonic_buffer_resource.

For embedded applications that should avoid new and delete, you can use a

std::pmr::null_memory_resource()

as the argument for upstream at the definition of a monotonic_buffer_resource

void throw_Exception_if_there_is_not_enough_memory(int n)
{
 std::pmr::monotonic_buffer_resource pool {memory.data(),

memory.size(), std::pmr::null_memory_resource()};
 std::pmr::list<std::pmr::string> container{ &pool };

// work with the container
}

pmr and STL Container für Embedded Anwendungen 11

Using a null_memory_resource throws an exception when memory is requested but none
is available in the memory pool. This way you can find out if the memory pool is too
small.

6. Polymorphic allocators contain a pointer to the memory_resource and are therefore also
called stateful allocators:

template <typename T>
class polymorphic_allocator // only an excerpt
{
memory_resource* res;

public:
 polymorphic_allocator() noexcept:res(get_default_resource()){};

// this is by intention not an explicit constructor:
 polymorphic_allocator(memory_resource* r) :res(r) {}
};

One advantage of such a pointer is shown in 7.

The non-polymorphic allocators from before C++17, on the other hand, do not have such
a pointer. Since this pointer is included in each object, objects with a polymorphic
allocator are slightly larger:

sizeof(std::string); // 24
sizeof(std::pmr::string); // 28

7. In 1. both the container and the elements were defined with polymorphic allocators:

std::pmr::vector<std::pmr::string> container{&pool}; // see 7.

Since no memory is specified here for the pmr::string elements, the question arises as to
which memory the string elements should use. The answer is: the elements use the same
memory as the container they are contained in. This is achieved with the pointer to the
memory_resource (see 6.) contained in a polymorphic allocator. This memory_resource
is passed from the surrounding type (here pmr::vector) to a contained type (here
pmr::string). Internally, this is achieved by using a std::scoped_allocator_adaptor.

Therefore in

std::pmr::vector<std::pmr::string> container{&pool};

both std::pmr::vector as well as the std::pmr::string-elements use the memory of pool.

This pass-through also works recursively with containers that contain containers:

std::pmr::vector<std::pmr::list<std::pmr::string>> c{ &pool };

Take care not to forget the pmr:: for the elements. If you use std::string, these memory
for the string data is allocated with new:

std::pmr::vector<std::string> c{&pool}; // Strings auf dem heap

https://stackoverflow.com/questions/22148258/what-is-the-purpose-of-stdscoped-allocator-adaptor

12 pmr and STL Container für Embedded Anwendungen

How to define your own classes that use the allocator of the container if they are elements
of a container is shown in section 1.2.4.

1.2.2 Benchmarks: pmr-Containers are often 3-5 times faster

The following benchmarks show that pmr containers are often faster by a factor of 3 to 5 than
std:: containers, where new and delete are often called. It was measured how long 100,000
push_back calls take, where 4, 100 and 1000 bytes are stored:

Benchmarks VS 2019.8, x64, /O2
Release 100.000 operations

pmr::vector /
std::vector

pmr::deque
/ std::deque

pmr::list /
std::list

1. push_back int 0,27 / 0,3 ms 0,4 / 6 ms 0,6 / 28 ms
2. push_back 100 Bytes 5 / 17 ms 1 / 30 ms 1,3 / 30 ms
3. push_back 1000 Bytes 70 / 230 ms 10 / 40 ms 10 / 40 ms
4. wie 3., mit reserve 12 / 50 ms – –

Benchmarks VS 2019.5, x64, /O2
Release 100.000 operations

pmr::vector /
std::vector

pmr::deque
/ std::deque

pmr::list /
std::list

1. push_back int 0,3 / 0,3 ms 0,4 / 1 ms 0,7 / 4 ms
2. push_back 100 Bytes 4 / 18 ms 1,5 / 6 ms 2 / 6 ms
3. push_back 1000 Bytes 70 / 200 ms 10 / 20 ms 10 / 15 ms
4. wie 3., mit reserve 12 / 40 ms – –

Benchmarks gcc 11.1, x64, -O3,
100.000 operations

pmr::vector
/ std::vector

pmr::deque
/ std::deque

pmr::list /
std::list

1. push_back int 0,2 / 0,5 ms 0,2 / 0,4 ms 0,6 /25 ms
2. push_back 100 Bytes 3 / 9 ms 1 / 6 ms 1 / 27 ms
3. push_back 1000 Bytes 80 / 100 ms 9 /35 ms 10 / 35 ms
4. wie 3., mit reserve 8 / 40 ms – –

John Lakos presents more detailed and refined benchmarks in ("Local ('Arena') Memory
Allocators (part 2 of 2)" CppCon 2017: https://www.youtube.com/watch?v=CFzuFNSpycI),
where monotone allocators are often also faster by a factor of 10. Jason Turner reports similar
improvement factors in C++ Weekly - Ep 222 - 3.5x Faster Standard Containers With PMR!,
as does Pablo Halpern in the talk "Getting Allocators out of Our Way".

1.2.3 A first Summary: pmr Container for Embedded Applications

The previous tutorial has shown that pmr containers can be created without using the heap
and thus prevent memory fragmentation. This satisfies requirements a), b) and e) of
AUTOSAR Rule A18-5-5:

(a) deterministic behavior resulting with the existence of worst-case execution time,
(b) avoiding memory fragmentation,
(e) no dependence on non-deterministic calls to kernel.

https://meetingcpp.com/mcpp/slides/2019/accu2019.191115.pdf
https://www.youtube.com/watch?v=0MdSJsCTRkY
https://www.youtube.com/watch?v=CFzuFNSpycI
https://www.youtube.com/watch?v=q6A7cKFXjY0
https://www.youtube.com/watch?v=RLezJuqNcEQ

pmr and STL Container für Embedded Anwendungen 13

Since the pmr containers are part of the standard library, it can be assumed that

(d) avoiding mismatched allocations or deallocations

is satisfied. In many applications, you can also provide enough memory and guarantee an
upper limit for the memory requirements, so that also also

(c) avoid running out of memory

is satisfied. Then all requirements of AUTOSAR Rule A18-5-5 and many other coding rules
(e.g. Misra, JSF, etc.) are met.

But that is not all: With the pmr containers, many algorithms of the standard library are also
available. They are often more sophisticated and efficient than hand crafted algorithms.

This means that, for the first time in the history of C++, the containers and algorithms of
the C++ standard library can be used in applications that require AUTOSAR Rule A18-5-5.

This is a big step forward compared to the time before C++17 and pmr: Since you could not
use the containers, the algorithms were often not available either. This functionality then had
to be produced by custom algorithms and data structures, causing a considerable development
and testing effort. It is also often not easy to achieve the efficiency of the standard library
with hand crafted containers and algorithms.

1.2.4 pmr-aware custom types Ө

Next, we will show what you have to consider when defining custom classes so that objects
of these classes use the polymorphic allocator when placed in a pmr container.

For the data members of a class that don't use allocators, it's easy: here you don't have to
consider anything at all. All the storage for these data members of an object is managed by
the allocator of the container.

Example: The class NoAllocs contains only an int member:

class NoAllocs
{
int i;

public:
 NoAllocs(int n) :i('A' + n){ }
};

Since int does not use an allocator, all memory for an object of this class is
managed by the allocator of the pmr container. If you put objects of this class in a
pmr container that has been allocated with a monotonic_buffer_resource,

std::pmr::monotonic_buffer_resource pool{ memory.data(),
memory.size() };

std::pmr::vector<NoAllocs> container{&pool};

14 pmr and STL Container für Embedded Anwendungen

all objects are stored in the memory pool. This has already been shown in the
example of section 1.2.1, 3.:

&= 0: A...B...C...D...E...F...G...H...I...J...
&=28: K...L...M...N...O...P...Q...R...S...T...

On the other hand, if data members of a class use allocators, the memory for those data
members is managed by those allocators. This is even true if the allocators are not pmr
allocators and the objects of the class are stored in a pmr container.

Example: If you pass objects of the class

class StdStringAlloc
{// The allocator of std::string uses new and delete.

int i;
 std::string str; // The characters of the string are
public: // stored on the heap
 StdStringAlloc(int n, std::string_view sv):i{n}, str{sv}
 { // string_view, not string, so that no string-
 str = char(n) + str; // constructor calling
 } // new is called
};

to a pmr container that uses a monotonic_buffer_resource,

std::pmr::monotonic_buffer_resource pool{ memory.data(),
memory.size() };

std::pmr::vector<StdStringAlloc> container{&pool};

only the 28 bytes (sizeof(std::string) = 24 + sizeof(int) = 4) of these objects are
stored in the memory pool. The characters belonging to the strings are stored in
the heap allocated by new and not in the memory pool. After the statements

const std::string non_sso_str ="-non-SSO-Str ####";//17,>16
for (int i = 0; i < n; ++i)
 container.push_back(StdStringAlloc(i+'A', non_sso_str));

you don't see anywhere in memory the characters of the stored string (with the
ascii part of show_memory from section 1.1.3):

&= 0 asc: A...x.......................B...(.......
&=28 asc:C.......................
&=50 asc:D...........................E.......
&=78 asc:F...H...............
&=a0 asc:G...........................H...

If strings with 16 or less characters would have been stored,

pmr and STL Container für Embedded Anwendungen 15

const std::string sso_str = "-SSO-String 16"; // 14, <= 16
for (int i = 0; i < n; ++i)
 container.push_back(StdStringAlloc(i + 'A', sso_str));

these would have been stored inside the string because of the small string
optimization (SSO) and therefore would be stored in memory:

&= 0 asc: A...A-SSO-String 16.........B...B-SSO-St
&=28 asc: ring 16.........C...C-SSO-String 16.....
&=50 asc:D...D-SSO-String 16.........E...E-SS
&=78 asc: O-String 16.........F...F-SSO-String 16.

To make objects of custom classes manage all data with the polymorphic allocators of the
container when stored in a pmr container, the simplest way is to use

1. pmr types (e.g. std::pmr::string) for all data members that have an allocator.

However, this is not enough. The following definitions are also necessary:

2. The public member allocator_type:

using allocator_type = std::pmr::polymorphic_allocator<char>;

Here exactly the name allocator_type must be used. However, the type specified in angle
brackets is meaningless and can be replaced by any other type.

3. Initializing constructors called without an allocator argument should use an
allocator_type-object for initializing the pmr elements. However, this is not necessary for
the copy and move constructors if they are implemented.

4. For all constructors (including the copy and move constructors) overloaded variants that
have an allocator_type parameter as an additional last parameter and use it for the pmr
elements. The copy and move constructors should not be noexcept.

Example: If you store objects of the class

class PmrType
{
int i; // an member without an allocator

 std::pmr::string pmr_str; // 1. not std::string
public:

using allocator_type =
std::pmr::polymorphic_allocator<char>; // 2.

16 pmr and STL Container für Embedded Anwendungen

// initializing constructor(s):
 PmrType(int n, std::string_view sv,

allocator_type alloc = {}) : // 3.
 i{ n }, pmr_str{ sv }
 {
 pmr_str = char(i) + pmr_str;
 }

// 4. copy/move with allocators:
 PmrType(const PmrType& c, allocator_type alloc)
 : pmr_str{ c.pmr_str, alloc }, i{ c.i }
 {}

 PmrType(PmrType&& c, allocator_type alloc)
 : pmr_str{ std::move(c.pmr_str), alloc }, i{ c.i }
 {}
};

in a pmr container,

std::pmr::monotonic_buffer_resource pool{ memory.data(),
memory.size() };

std::pmr::vector<PmrType> container{ &pool };
container.reserve(n);
const std::string non_sso_str ="-non-SSO-Str ####";//17,>16
for (int i = 0; i < n; ++i)
 container.push_back(PmrType(i + 'A', non_sso_str));

you can see all data in the memory of memory:

&= 0 asc: A...`./..s..------------........B...`./.
&=28 asc: .t..------------........C...`./..t..----
&=50 asc: --------........A-non-SSO-Str ####.-----
&=78 asc: --------B-non-SSO-Str ####.-------------
&=a0 asc: C-non-SSO-Str ####.-------------A...`./.

If you want to set a pmr::string in a class via a member function, you have to be careful not
to forget the pmr::. You can also use a parameter of type string_view. However, you should
avoid std::string or std::string&, since std::string& can also lead to the call of a std::string
constructor and thus to a call of new if, for example, a char* argument is passed.

1.3 Allocators in C++17

Before C++17, writing custom allocators was difficult and error-prone. In C++17 this has
been greatly simplified. The pmr allocators are all derived from the abstract base class
memory_resource. It consists of only a few member functions. If you want to develop your

pmr and STL Container für Embedded Anwendungen 17

own allocators, you "only" have to derive your own class in which the functions do_allocate,
do_deallocate and do_is_equal are overridden.

Pablo Halpern, one of the leading authors of pmr, illustrated this with this graphic at his talk
at CppCon 2017 (https://www.youtube.com/watch?v=v3dz-AKOVL8,
https://github.com/phalpern):

1.4 What is polymorphic with pmr-Allocators? Ө

A polymorphic_allocator uses virtual functions for the allocation of memory. In the examples
so far, this feature has not been used explicitly. In the following, it is briefly shown what
advantages polymorphic allocators

std::vector<T, polymorphic_allocator<T>>; // C++17

have, compared to the non-polymorphic ones from the time before C++17:

std::vector<T, typename Allocator = std::allocator<T>>; // vor C++17

First, let's start with an example to show the disadvantage of non-polymorphic allocators.

Since the type of a type argument affects the type of a generic type, generic types with
different type arguments are different. Therefore, they cannot be assigned to each other, or
used as arguments to a parameter in a function.

Example: Since the two classes

template <typename T> template <typename T>
class memory_resource_1{ }; class memory_resource_2{ };

https://github.com/phalpern
https://stackoverflow.com/questions/38010544/polymorphic-allocator-when-and-why-should-i-use-it

18 pmr and STL Container für Embedded Anwendungen

are two different types, with

template <typename T, typename MyAllokator>
class MyContainer{};

the two containers

MyContainer<int, memory_resource_1<int>> v1;
MyContainer<int, memory_resource_2<int>> v2;

have different types. That is why the assignment:

v1 = v2; // error - the types of v1 and v2 are different

is not allowed, nor is passing an argument of the type of v1 to a parameter of the
type of v2.

To make such assignments possible, the allocators are derived from an abstract base class

template <typename T>
class memory_resource {
public:

virtual void allocate(T x) = 0;
};

template <typename T>
class memory_resource_1 :public memory_resource<T>
{
void allocate(T x) override {};

};

template <typename T>
class memory_resource_2 :public memory_resource<T>
{
void allocate(T x) override {};

};

Then they are passed to the container via the constructor:

template <typename T, typename MyAllocator=memory_resource<T> >
class MyContainer
{
MyAllokator* a_;

public:
 MyContainer(MyAllocator* a): a_(a){};
void push_back(const T& x)

 {
 a_->allocate(x) ;
 }
};

This allows assignments of containers with different allocators:

pmr and STL Container für Embedded Anwendungen 19

memory_resource_1<int> m1;
memory_resource_2<int> m2;
MyContainer<int> v1(&m1);
MyContainer<int> v2(&m2);
v1 = v2; // the types of v1 and v2 are the same: MyContainer<int>

To a function like

void f(MyContainer<int>& t) {}

v1 and v2 can be passed as arguments:

f(v1); f(v2);

Since the call to allocate in push_back is virtual, this results in a call to allocate from
memory_resource_1 in v1 and a call to allocate from memory_resource_2 in v2.

It is also possible to change the allocator at runtime.

Even if you rarely make use of this compatibility: It is often used in the standard C++17
library, contributing to ease of use. In C++11 this was not possible.

1.5 Literatur

Pablo Halpern: Allocators: the good parts (CppCon 2017): https://youtu.be/v3dz-AKOVL8

Pablo Halpern: „Getting Allocators out of Our Way“
https://www.youtube.com/watch?v=RLezJuqNcEQ

Nico Josuttis: C++17 - The Complete Guide http://cppstd17.com/

Jason Turner “C++ Weekly - Ep 222 - 3.5x Faster Standard Containers With PMR!”
https://www.youtube.com/watch?v=q6A7cKFXjY0

Jason Turner Ep 235: https://www.youtube.com/watch?v=vXJ1dwJ9QkI&feature=youtu.be

Jason Turner Ep 236: https://www.youtube.com/watch?v=2LAsqp7UrNs Construction
Allocator-aware types

https://en.cppreference.com

Pablo Halpern: http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2005/n1850.pdf

Pablo Halpern: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2554.pdf

Pablo Halpern 2013: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3525.pdf

Pablo Halpern: http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2014/n3916.pdf

https://www.youtube.com/watch?v=v3dz-AKOVL8&feature=youtu.be
https://www.youtube.com/watch?v=RLezJuqNcEQ
https://www.youtube.com/watch?v=RLezJuqNcEQ
http://cppstd17.com/
https://www.youtube.com/watch?v=q6A7cKFXjY0
https://www.youtube.com/watch?v=q6A7cKFXjY0
https://www.youtube.com/watch?v=vXJ1dwJ9QkI&feature=youtu.be
https://www.youtube.com/watch?v=2LAsqp7UrNs

20 pmr and STL Container für Embedded Anwendungen

https://stackoverflow.com/questions/22148258/what-is-the-purpose-of-stdscoped-allocator-
adaptor von Jonathan Wakely

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2126r0.pdf

Pablo Halpern, Dietmar Kühl: http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2018/p0339r5.pdf

Arthur O'Dwyer “An Allocator is a Handle to a Heap” (CppCon 2018):
https://trshow.info/watch/IejdKidUwIg/cppcon-2018-arthur-o-dwyer-an-allocator-is-a-
handle-to-a-heap.html

https://stackoverflow.com/questions/22148258/what-is-the-purpose-of-stdscoped-allocator-adaptor
https://stackoverflow.com/questions/22148258/what-is-the-purpose-of-stdscoped-allocator-adaptor
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0339r5.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0339r5.pdf

	C++17 Polymorphic Memory Resources (pmr) and STL Containers for Embedded Applications
	1.1 Introduction
	1.1.1 About Me
	1.1.2 Embedded Applications
	1.1.3 Tracking new and delete

	1.2 Allocators and polymorphic memory resources
	1.2.1 Containers that are using a monotonic_buffer_resource
	1.2.2 Benchmarks: pmr-Containers are often 3-5 times faster
	1.2.3 A first Summary: pmr Container for Embedded Applications
	1.2.4 pmr-aware custom types Ө

	1.3 Allocators in C++17
	1.4 What is polymorphic with pmr-Allocators? Ө
	1.5 Literatur

